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More than 20 years ago, Jaeger reported'? that pho-
tolysis of 3,5-dimethoxybenzyl acetate (DMBA), 1, in
hexane, gave a 17% yield of the isomer 2 along with
radical-derived coupling products, the in-cage one, 3
(47%), being the major one (Scheme 1). We were in-
trigued by the possibility that 2 might also be a primary
photoproduct in polar, nucleophilic solvents, like metha-
nol, where photolysis of DMBA gives, as the major
product, the ether 4 (56%),% clearly derived from an
intermediate arylmethyl cation. If 2 is formed in metha-
nol, it might be expected to undergo rapid ground-state
solvolysis to 4 complicating mechanistic arguments*®
centered on the yield of ion-derived products in this
“photosolvolysis” reaction, i.e., is 4 formed entirely in the
primary photochemistry of DMBA or, at least in part, in
a secondary ground-state process from 2? This is an
important question because DMBA, and other multiple
methoxy substituted benzyl acetates, has been shown?
to give a higher yield of ion-derived products than
expected on the basis of a mechanism that emphasizes
formation of ion pairs from radical pairs by electron
transfer. Moreover, on the basis of the pioneering study
by Zimmerman® on the influence of meta methoxy sub-
stituents on benzene excited state reactivity, the 3,5-
dimethoxybenzyl chromophore in benzoin derivatives has
recently been advocated in the design of practical ex-
amples of photo labile protecting groups.”8

We therefore decided to isolate and examine the
reactivity of 2 and now report that (1) the compound
previously reported as 2 is, in fact, the bicyclic isomer 5;
(2) 2 can be prepared from 5 by pyrolysis in hexane; (3)
2 does undergo rapid ground-state solvolysis in methanol;
and (4) 2 is formed as a primary photoproduct of DMBA
in methanol.

Photolysis® in hexanes results, as previously reported,*
in the rapid®® disappearance of DMBA. By integration
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of the 'H NMR spectrum of the crude reaction mixture,
using the signals previously reported and assigned to 2,
the yield of the photoisomer was 9%. This compound was
then partially purified by preparative chromatography.?
The original assignment of 2 was made only on the basis
of 100 MHz 'H NMR spectra, and two of the reported
features were puzzling. First, the signal for H, was at 0
3.58, a very low value for a doubly allylic methine
hydrogen at an ester carbon (an approximate value of 6
6.6 can be predicted using the corresponding CH, in
o-isotoluene (C;Hg) at & 3.17 (C¢He)*? and 6 3.32 (CCly)*3
and the expected substituent effect of an ester oxygen of
0 3.4'%) and, second, the two methoxy groups, although
in very similar chemical environments, gave quite dif-
ferent chemical shifts (0 3.24 and 6 3.62). When ‘H—
13C-correlated spectra'® demonstrated that both H, and
H. were on sp3-hybridized carbons at ¢ 76.6 and ¢ 52.6,
respectively, assignment of the structure 2 to this com-
pound became untenable. In contrast, the NMR spectra
are consistent with structure 5, particularly when the
IH and 3C chemical shifts, after correcting for substitu-
ent effects, are compared with those of the previously
reported®® unsubstituted compound, C;Hg, another isomer
of toluene. Moreover, the structure of 5 makes chemical
sense, because an obvious mechanism for its formation
is the allowed disrotatory butadiene to cyclobutene ring
closure by secondary photochemistry of 2.16

As expected, freshly isolated samples of 5 were trans-
parent at 320 nm; however, 5 slowly isomerized to 2, and
this first-order conversion could be monitored by either
IH NMR or the increasing absorbance at 320 nm (ty,
approximately 10 h at room temperature).l” The conver-
sion of 5 to 2 was cleanly first order in hexanes at 50 °C
(tz2 = 89 min)® and 2 could then be isolated, spectra!®
taken, and its reactivity studied. NMR samples of 2 in
CDCl; were relatively unstable as 2 rearranged to the
toluene derivative 6; this process was quantitative after
2 h at 50 °C.2° In acetonitrile, 2 rearranges back to
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(18) For the unsubstituted compound, a value of t;, = 210 min in THF
can be calculated from the Arrhenius values reported.t?
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DMBA, presumably because this more polar solvent
induces contact ion pair formation. Of particular rel-
evance to the photochemistry of DMBA in polar, nucleo-
philic solvents, the half-life for first-order solvolysis of 2
in methanol at room temperature is only 2.7 min at 25
°C! The products result from partitioning of the ion pair
between nucleophilic capture by methanol to give the
methyl ether, 4 (60%) and internal return to DMBA
(40%).

Finally, to demonstrate that 2 is formed in methanol,
laser flash photolysis®® of DMBA at 266 nm gave an
absorbance spectrum with a maximum at 320 nm that
remained constant on the millisecond time scale. More-
over, samples subjected to multiple 266 nm laser pulses
could be transferred to a diode array spectrometer and
the decay of the photogenerated transient monitored. The
lifetime obtained was identical to that obtained from the
preparative-scale NMR samples, conclusively demon-
strating that 2 is a primary photoproduct in methanol.??

These observations have important implications in the
ongoing debate concerning the mechanism for formation
of ion-derived products in the photochemistry of benzyl
acetates.*® There are three possible mechanisms for the
formation of 2 from DMBA in methanol: (1) concerted
sigmatropic rearrangement; (2) recombination of an
initially formed radical pair; and (3) recombination of an
initially formed ion pair. If either mechanism (1) or (2)
is important in nucleophilic solvents such as methanol,
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then the yield of ion-derived product, the methyl ether
4, will be increased by a ground-state pathway for its
formation that is independent of the photochemical
pathway. By analogy with the photo-Fries reaction
where solvent caged radical pairs generated from the
singlet excited state are proven intermediates,?® mech-
anism 2 would seem to be preferred.

Moreover, preliminary results for DMBP (the tert-
butyl, or pivalate, ester derivative of 1) also support
mechanism 2. Both DMBA and DMBP produce an
absorbance at 320 nm after multiple 266 nm laser pulses.
For DMBA, after the decay of 2 is complete, the residual
absorbance remaining is still 15% of the starting absor-
bance value. This residual absorbance is assigned to the
more stable alkyl-substituted triene product that would
result by combination of the radical pair after the
decarboxylation of the acyloxy radical.?* In contrast, for
DMBP, the residual absorbance is 77% of the original
value. For the radical pair in this case, decarboxylation
of the acyloxy radical is faster?® so that formation of the
solvolytically reactive trienyl ester? is less efficient
relative to the formation of hydrocarbon products.

Future experiments will be directed toward establish-
ing the photochemical yield and reactivity of isomers
analogous to 2 as a function of substrate (substituents
and leaving group) and reaction conditions (solvent,
wavelength of irradiation, etc.).
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